test lab automation
OS214 OS414 OS3012
OS214 1x4 duplex switch OS214 - 1x4 duplex switch OS414 4(1x4) duplex switch OS414 - 4(1x4) duplex switch OS3012 100(1x2) duplex switch OS3012 - 100(1x2) switch

1xN or n(1xN) switches are used by development/test engineers or test lab automation systems to time share one expensive optical device with many other optical devices. It can save thousands of dollars in capital equipment spending by allowing effective use of under-utilized expensive optical equipment. Typical application involves sharing an expensive 10GE BERT or a protocol analyzers with 10GE Ethernet uplinks in production automation and test environments; Another application involves sharing an expensive Fibre Channel switch with other Fibre Channel devices in test and development testbeds.

The popular switch models in this category include OS214 (1x4 duplex or 2x8), OS218 (1x8 duplex which 2x16), OS414 (4(1x4) duplex which is 4(2x8)) and OS3012 100(1x2) duplex which is 100(2x4).

Echola 1xN switches are Layer 1 optical switches that provides transparent connectivity, So you don't need expensive transceivers (for eg. 10GE SFP) for connecting to other optical devices. It can be used with any protocols (Fibre Channel, Ethernet, SONET etc.) and speed (1G,4G,10G,40G etc.), as opposed to O-E-O (optical electrical conversion - 2R/3R) devices which need expensive transceivers for each port. The transparent optical layer connectivity allows unit under test to be tested without introducing any latency.

1xN optical switches have one input and multiple outputs. The input light can be switched from input to any one of the output at any given time. The switching takes place in less than 5 ms. n(1xN) optical switches have multiple(n) such 1xN switches in single enclosure controlled by one network management module.

1xN switch illustration

The traditional 1xN switches available in the market today are not directly manageable through network, users need to have dedicated computer and software driver to connect to their GPIB or RS232 management interface which not only increases total cost of ownership but also restricts access to single user. GPIB and RS232 pose severe issues to use in today's complex regression tests and test automation environments where multiple users or applications need to share the same resource. Moreover the duplex functionality doesn't normally come in the standard configuration, either you have to custom order or connect two such 1xN devices in parallel and go through cumbersome configuration and management.

Another problem with traditional 1xN optical switch is that they can’t be cascaded. This limits the scalability of such device to its physical size and electrical characteristics apart from its optical characteristics like insertion loss. You could end up spending more on new equipment to replace the old one when your business expands. For instance the OS214 allows users to configure many OS214 devices in series, only limited by the optical devices transmit power and OS214s total insertion loss, to share many more optical devices. The following diagram shows how two OS214 switches can be connected to get one duplex 1x7 virtual switch.

cascading 1xN switches

For more details on os214, click here

For more details on os414, click here

For more details on os3012, click here